[wp_code id="129"]

CMA Final SFM – Complete Futures & Options Derivatives Tool

CMA Final SFM – Complete Futures & Options Derivatives Tool
CMA Final SFM - Complete Futures & Options Derivatives Tool

CMA Final SFM - Complete Futures & Options Derivatives Tool

Interactive calculators and explanations for all key derivatives formulas

Futures Pricing
Options Pricing
Options Payoffs
Options Greeks
Trading Strategies
Arbitrage Relationships

Futures Pricing Formulas

Cost of Carry Model

The Cost of Carry Model determines the theoretical price of a futures contract based on the spot price plus the cost of carrying the underlying asset until delivery.

Example: If gold spot price is $1,800, interest rate is 5%, and time to expiry is 6 months:

F = 1800 × e^(0.05 × 0.5) = 1800 × 1.0253 ≈ $1,845.54

F = S × e^(r × T)

Result:

Futures with Continuous Dividend Yield

For assets that provide a continuous dividend yield, the cost of carry is reduced by the dividend yield.

Example: Stock index with spot 3000, dividend yield 2%, interest rate 4%, time 0.5 years:

F = 3000 × e^((0.04 - 0.02) × 0.5) = 3000 × e^0.01 ≈ 3030.15

F = S × e^((r - q) × T)

Result:

Futures with Storage Costs

For commodities that incur storage costs, these costs are added to the cost of carry.

Example: Commodity with spot $50, interest rate 5%, storage cost 3%, time 1 year:

F = 50 × e^((0.05 + 0.03) × 1) = 50 × e^0.08 ≈ 54.16

F = S × e^((r + u) × T)

Result:

Options Pricing Models

Black-Scholes Model (Call Option)

The Black-Scholes model calculates the theoretical price of European call options using five inputs: stock price, strike price, time to expiration, risk-free rate, and volatility.

Example: Stock $100, Strike $100, Time 1 year, Rate 5%, Volatility 20%:

d1 = 0.325, d2 = 0.125, N(d1) = 0.627, N(d2) = 0.550

C = 100×0.627 - 100×e^(-0.05)×0.550 ≈ 62.70 - 52.29 = $10.41

C = S × N(d1) - K × e^(-rT) × N(d2)
d1 = [ln(S/K) + (r + σ²/2)T] / (σ√T)
d2 = d1 - σ√T

Result:

Black-Scholes Model (Put Option)

The Black-Scholes formula for put options can be derived from the call option formula using put-call parity.

Example: Using same inputs as call example:

P = 100×e^(-0.05)×0.450 - 100×0.373 ≈ 42.79 - 37.30 = $5.49

P = K × e^(-rT) × N(-d2) - S × N(-d1)

Result:

Binomial Option Pricing Model

The binomial model prices options by creating a binomial tree of possible future stock prices and working backward to determine the option value at each node.

Example: Single-period model with S=100, K=100, u=1.1, d=0.9, r=5%:

p = (e^(0.05) - 0.9) / (1.1 - 0.9) = 0.756

C = e^(-0.05) × [0.756×10 + 0.244×0] ≈ 0.951 × 7.56 = $7.19

p = (e^(rΔt) - d) / (u - d)
Option Value = e^(-rΔt) × [p×Value_up + (1-p)×Value_down]

Result:

Options Payoff Calculations

Call Option Payoff

The payoff for a call option buyer is the maximum of zero or the difference between the underlying price and the strike price, minus the premium paid.

Example: Buy call with K=100, premium=5. If stock price at expiry is 120:

Payoff = max(0, 120-100) - 5 = 20 - 5 = $15 profit

Long Call Payoff = max(0, S - K) - Premium
Short Call Payoff = Premium - max(0, S - K)

Result:

Put Option Payoff

The payoff for a put option buyer is the maximum of zero or the difference between the strike price and the underlying price, minus the premium paid.

Example: Buy put with K=100, premium=4. If stock price at expiry is 80:

Payoff = max(0, 100-80) - 4 = 20 - 4 = $16 profit

Long Put Payoff = max(0, K - S) - Premium
Short Put Payoff = Premium - max(0, K - S)

Result:

Covered Call Payoff

A covered call involves owning the underlying asset and selling a call option against it. This strategy generates income but limits upside potential.

Example: Buy stock at 100, sell call with K=110, premium=3. If stock at expiry is 120:

Payoff = (110-100) + 3 = 10 + 3 = $13 profit

Payoff = min(S, K) - Purchase Price + Premium

Result:

Options Greeks

Delta (Δ)

Delta measures the sensitivity of an option's price to changes in the price of the underlying asset. Call deltas range from 0 to 1, put deltas from -1 to 0.

Example: For a call option with delta 0.6, if the stock price increases by $1, the option price will increase by approximately $0.60.

Δcall = N(d1)
Δput = N(d1) - 1

Result:

Gamma (Γ)

Gamma measures the rate of change of delta with respect to changes in the underlying price. It's highest for at-the-money options and decreases as options move in or out of the money.

Example: If an option has a gamma of 0.05, and the stock price increases by $1, the delta will increase by 0.05.

Γ = N'(d1) / (S × σ × √T)

Result:

Theta (Θ)

Theta measures the sensitivity of an option's price to the passage of time (time decay). Options lose value as expiration approaches, with theta quantifying this daily loss.

Example: If an option has a theta of -0.05, its price will decrease by approximately $0.05 per day, all else being equal.

Θcall = - (S × N'(d1) × σ) / (2√T) - r × K × e^(-rT) × N(d2)
Θput = - (S × N'(d1) × σ) / (2√T) + r × K × e^(-rT) × N(-d2)

Result:

Options Trading Strategies

Straddle Strategy

A straddle involves buying both a call and a put option with the same strike price and expiration date. This strategy profits from significant price moves in either direction.

Example: Buy call and put with K=100, call premium=5, put premium=4. Total cost=9.

If stock at expiry is 120: Payoff = (120-100) - 9 = 11 profit

If stock at expiry is 80: Payoff = (100-80) - 9 = 11 profit

Payoff = |S - K| - (Call Premium + Put Premium)

Result:

Strangle Strategy

A strangle involves buying out-of-the-money call and put options with different strike prices. It's cheaper than a straddle but requires larger price moves to profit.

Example: Buy call with K=110 (premium=3) and put with K=90 (premium=2). Total cost=5.

If stock at expiry is 120: Payoff = (120-110) - 5 = 5 profit

If stock at expiry is 80: Payoff = (90-80) - 5 = 5 profit

Payoff = max(0, S - Kcall) + max(0, Kput - S) - Total Premium

Result:

Bull Call Spread

A bull call spread involves buying a call option at a lower strike price and selling a call option at a higher strike price. This strategy profits from moderate price increases with limited risk.

Example: Buy call with K=100 (premium=5), sell call with K=110 (premium=2). Net cost=3.

If stock at expiry is 115: Payoff = (115-100) - (115-110) - 3 = 15 - 5 - 3 = 7 profit

Payoff = min(S - Klow, Khigh - Klow) - Net Premium

Result:

Arbitrage Relationships

Put-Call Parity

Put-call parity defines the relationship between the prices of European put and call options with the same strike price and expiration date. Violation of this relationship creates arbitrage opportunities.

Example: Stock=100, Call=10, Put=5, Strike=100, Rate=5%, Time=1 year.

According to parity: Call + PV(Strike) = Put + Stock

10 + 100×e^(-0.05) = 10 + 95.12 = 105.12

Put + Stock = 5 + 100 = 105 → Arbitrage opportunity exists

C + PV(K) = P + S
where PV(K) = K × e^(-rT)

Result:

Call Option Lower Bound

The price of a European call option must be at least the maximum of zero or the difference between the stock price and the present value of the strike price.

Example: Stock=100, Strike=95, Rate=5%, Time=1 year.

PV(K) = 95×e^(-0.05) ≈ 90.48

Lower bound = max(0, 100 - 90.48) = 9.52

If call price < 9.52, arbitrage opportunity exists

C ≥ max(0, S - PV(K))
where PV(K) = K × e^(-rT)

Result:

Put Option Lower Bound

The price of a European put option must be at least the maximum of zero or the difference between the present value of the strike price and the stock price.

Example: Stock=100, Strike=110, Rate=5%, Time=1 year.

PV(K) = 110×e^(-0.05) ≈ 104.64

Lower bound = max(0, 104.64 - 100) = 4.64

If put price < 4.64, arbitrage opportunity exists

P ≥ max(0, PV(K) - S)
where PV(K) = K × e^(-rT)

Result:

Options & Futures Payoff Diagrams

Visualize how different strategies perform at various underlying prices

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 [wp_code id="129"]
Scroll to Top
×